Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont

Simple item page

Simple item page

Full item details

creativework.keywords - en
Bacterial proteins
Bacteroides
Glycosidases
Intestines
Recombinant proteins
Sepharose
Symbiosis
creativework.keywords - fr
Protéines bactériennes
Bacteroides
Glycosidases
Intestins
Protéines recombinantes
Agarose
Symbiose
dc.contributor.author
Pluvinage, Benjamin
Grondin, Julie M.
Amundsen, Carolyn
Klassen, Leeann
Moote, Paul E.
Xiao, Yao
Thomas, Dallas
Pudlo, Nicholas A.
Anele, Anuoluwapo
Martens, Eric C.
Inglis, G. Douglas
Uwiera, Richard E.R.
Boraston, Alisdair B.
Abbott, D. Wade
dc.date.accepted
2017-11-15
dc.date.accessioned
2025-01-13T13:52:03Z
dc.date.available
2025-01-13T13:52:03Z
dc.date.issued
2018-03-13
dc.date.submitted
2017-01-27
dc.description.abstract - en
In red algae, the most abundant principal cell wall polysaccharides are mixed galactan agars, of which agarose is a common component. While bioconversion of agarose is predominantly catalyzed by bacteria that live in the oceans, agarases have been discovered in microorganisms that inhabit diverse terrestrial ecosystems, including human intestines. Here we comprehensively define the structure–function relationship of the agarolytic pathway from the human intestinal bacterium Bacteroides uniformis (Bu) NP1. Using recombinant agarases from Bu NP1 to completely depolymerize agarose, we demonstrate that a non-agarolytic Bu strain can grow on GAL released from agarose. This relationship underscores that rare nutrient utilization by intestinal bacteria is facilitated by the acquisition of highly specific enzymes that unlock inaccessible carbohydrate resources contained within unusual polysaccharides. Intriguingly, the agarolytic pathway is differentially distributed throughout geographically distinct human microbiomes, reflecting a complex historical context for agarose consumption by human beings.
dc.identifier.citation
Pluvinage, B., Grondin, J. M., Amundsen, C., Klassen, L., Moote, P. E., Xiao, Y., Thomas, D., Pudlo, N. A., Anele, A., Martens, E. C., Inglis, G. D., Uwiera, R. E. R., Boraston, A. B., & Abbott, D. W. (2018). Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nature Communications, 9, Article 1043. https://doi.org/10.1038/s41467-018-03366-x
dc.identifier.doi
https://doi.org/10.1038/s41467-018-03366-x
dc.identifier.issn
2041-1723
dc.identifier.uri
https://open-science.canada.ca/handle/123456789/3306
dc.language.iso
en
dc.publisher - en
Nature Publishing Group
dc.rights - en
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights - fr
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights.openaccesslevel - en
Gold
dc.rights.openaccesslevel - fr
Or
dc.rights.uri - en
https://creativecommons.org/licenses/by/4.0/
dc.rights.uri - fr
https://creativecommons.org/licenses/by/4.0/deed.fr
dc.subject - en
Bacteria
Human beings
dc.subject - fr
Bactérie
Être humain
dc.subject.en - en
Bacteria
Human beings
dc.subject.fr - fr
Bactérie
Être humain
dc.title - en
Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont
dc.type - en
Article
dc.type - fr
Article
local.acceptedmanuscript.articlenum
1043
local.article.journaltitle - en
Nature Communications
local.article.journalvolume
9
local.pagination
1-14
local.peerreview - en
Yes
local.peerreview - fr
Oui
local.requestdoi
No
Download(s)

Original bundle

Now showing 1 - 1 of 1

Thumbnail image

Name: MolecularBasisOfAnAgaroseMetabolicPathwayAcquiredByAHumanIntestinalSymbiont_2018.pdf

Size: 2.58 MB

Format: PDF

Download file

Collection(s)

Page details

Date modified: