Modeling phosphorus losses from soils amended with cattle manures and chemical fertilizers

Simple item page

Simple item page

Full item details

dc.contributor.author
Wang, Zhaozhi
Zhang, T. Q.
Tan, C. S.
Vadas, P.
Qi, Z. M.
Wellen, C.
dc.date.accessioned
2023-05-09T14:49:53Z
dc.date.available
2023-05-09T14:49:53Z
dc.date.issued
2018-05-26
dc.description.abstract - en
While applied manure/fertilizer is an important source of P loss in surface runoff, few models simulate the direct transfer of phosphorus (P) from soil-surface-applied manure/fertilizer to surface runoff. The SurPhos model was tested with 2008–2010 growing season daily surface runoff data from clay loam experimental plots subject to different manure/fertilizer applications. Model performance was evaluated on the basis of the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and the ratio of the root mean square error to the standard deviation of observed values (RSR). The model offered an acceptable performance in simulating soil labile P dynamics (R2 = 0.75, NSE = 0.55, PBIAS = 10.43%, and RSR = 0.67) and dissolved reactive P (DRP) loss in surface runoff (R2 ≥ 0.74 and NSE ≥ 0.69) for both solid and liquid cattle manure, as well as inorganic fertilizer. Simulated direct P loss in surface runoff from solid and liquid cattle manure accounted for 39% and 40% of total growing season DRP losses in surface runoff. To compensate for the unavailability of daily surface runoff observations under snow melt condition, the whole four years' (2008–2011) daily surface runoff predicted by EPIC (Environmental Policy Integrated Climate) was used as SurPhos input. The accuracy of simulated DRP loss in surface runoff under the different manure/fertilizer treatments was acceptable (R2 ≥ 0.55 and NSE ≥ 0.50). For the solid cattle manure treatment, of all annual DRP losses, 19% were derived directly from the manure. Beyond offering a reliable prediction of manure/fertilizer P loss in surface runoff, SurPhos quantified different sources of DRP loss and dynamic labile P in soil, allowing a better critical assessment of different P management measures' effectiveness in mitigating DRP losses.
dc.identifier.citation
Wang, Z., Zhang, T., Tan, C., Vadas, P., Qi, Z., Wellen, C. Modeling phosphorus losses from soils amended with cattle manures and chemical fertilizers. (2018). Science of The Total Environment, 639, 580-587. https://doi.org/10.1016/j.scitotenv.2018.05.141
dc.identifier.doi
https://doi.org/10.1016/j.scitotenv.2018.05.141
dc.identifier.issn
1879-1026
dc.identifier.uri
https://open-science.canada.ca/handle/123456789/270
dc.language.iso
en
dc.publisher
Elsevier
dc.rights.openaccesslevel - en
Green
dc.rights.openaccesslevel - fr
Vert
dc.subject - en
Agriculture
dc.subject - fr
Agriculture
dc.subject.en - en
Agriculture
dc.subject.fr - fr
Agriculture
dc.title - en
Modeling phosphorus losses from soils amended with cattle manures and chemical fertilizers
dc.type - en
Article
dc.type - fr
Article
local.article.journaltitle
Science of the Total Environment
local.article.journalvolume
639
local.pagination
580-587
local.peerreview - en
Yes
local.peerreview - fr
Oui
Download(s)

Original bundle

Now showing 1 - 1 of 1

Thumbnail image

Name: ModelingPhosphorusLossesFromSoilsAmendedWithCattleManuresAndChemicalFertilizers_2018.pdf

Size: 1.69 MB

Format: PDF

Download file

Collection(s)

Page details

Date modified: