Application Potential of Four Nontraditional Similarity Metrics in Hydrometeorology
- DOI
- Language of the publication
- English
- Date
- 2014-10-01
- Type
- Article
- Author(s)
- Mo, Ruping
- Ye, Chengzhi
- Whitfield, Paul H.
- Publisher
- American Meteorological Society
Abstract
This paper presents a review and assessment of four nontraditional similarity metrics that can be applied to hydrological and meteorological data. These metrics are 1) the uncentered correlation coefficient, 2) the Hodgkin–Richards index, 3) the Petke index, and 4) the Wang–Bovik index. The first metric has been widely used in hydrometeorology, and the other three have been proposed in other disciplines for similarity analysis. It is demonstrated that these similarity metrics, in their original formulations, either do not actually have the purported advantage over the traditional Pearson correlation coefficient or are not suitable for some hydrometeorological applications. They are reformulated in this study to address these deficiencies. The resulting modified metrics are unitless, bounded, and proportional to the Pearson correlation coefficient, and three of them have the confirmed advantage of explicitly penalizing for differences in the mean and/or in the variance. Two application examples are used to demonstrate the applicability of these similarity metrics in hydrometeorology. A metavalidation model and a graphical tool (Taylor diagram) are used to evaluate the performances of these similarity metrics. In a case study of analog analysis, the Wang–Bovik index stands out as the best metric for simulation of the human perception of similarity between two-dimensional patterns, whereas the modified Petke index and the traditional root-mean-square distance may perform slightly better than the others in the regions with a very large difference between the variances.
Description
Copyright [2014] American Meteorological Society (AMS). For permission to reuse any portion of this Work, please contact permissions@ametsoc.org. Any use of material in this Work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy)
Subject
- Nature and environment,
- Science and technology,
- Climate
Pagination
1862–1880
Peer review
Yes
Open access level
Green
Identifiers
- ISSN
-
1525-755X
- 1525-7541
Article
- Journal title
- Journal of Hydrometeorology
- Journal volume
- 15
- Journal issue
- 5
- Accepted date
- 2014-04-21
- Submitted date
- 2013-08-15