Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale

Simple item page

Simple item page

Full item details

creativework.keywords - en
Wheat--Yields
Blé--Rendement
Blé--Prévision
Wheat--Forecasting
creativework.keywords - fr
MODIS (Spectroradiomètre)
MODIS (Spectroradiometer)
Agriculture--Télédétection
Agriculture--Remote sensing
dc.contributor.author
Kouadio, Louis
Newlands, Nathaniel K.
Davidson, Andrew
Zhang, Yinsuo
Chipanshi, Aston
dc.date.accepted
2014-10-11
dc.date.accessioned
2024-10-21T19:08:08Z
dc.date.available
2024-10-21T19:08:08Z
dc.date.issued
2014-10-23
dc.date.submitted
2014-08-25
dc.description.abstract - en
Crop yield forecasting plays a vital role in coping with the challenges of the impacts of climate change on agriculture. Improvements in the timeliness and accuracy of yield forecasting by incorporating near real-time remote sensing data and the use of sophisticated statistical methods can improve our capacity to respond effectively to these challenges. The objectives of this study were (i) to investigate the use of derived vegetation indices for the yield forecasting of spring wheat (Triticum aestivum L.) from the Moderate resolution Imaging Spectroradiometer (MODIS) at the ecodistrict scale across Western Canada with the Integrated Canadian Crop Yield Forecaster (ICCYF); and (ii) to compare the ICCYF-model based forecasts and their accuracy across two spatial scales-the ecodistrict and Census Agricultural Region (CAR), namely in CAR with previously reported ICCYF weak performance. Ecodistricts are areas with distinct climate, soil, landscape and ecological aspects, whereas CARs are census-based/statistically-delineated areas. Agroclimate variables combined respectively with MODIS-NDVI and MODIS-EVI indices were used as inputs for the in-season yield forecasting of spring wheat during the 2000–2010 period. Regression models were built based on a procedure of a leave-one-year-out. The results showed that both agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI performed equally well predicting spring wheat yield at the ECD scale. The mean absolute error percentages (MAPE) of the models selected from both the two data sets ranged from 2% to 33% over the study period. The model efficiency index (MEI) varied between −1.1 and 0.99 and −1.8 and 0.99, respectively for the agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI data sets. Moreover, significant improvement in forecasting skill (with decreasing MAPE of 40% and 5 times increasing MEI, on average) was obtained at the finer, ecodistrict spatial scale, compared to the coarser CAR scale. Forecast models need to consider the distribution of extreme values of predictor variables to improve the selection of remote sensing indices. Our findings indicate that statistical-based forecasting error could be significantly reduced by making use of MODIS-EVI and NDVI indices at different times in the crop growing season and within different sub-regions.
dc.description.fosrcfull - en
This article belongs to the Special Issue: Remote Sensing in Food Production and Food Security.
dc.description.fosrcfull-fosrctranslation - fr
Cet article fait partie du numéro spécial: Remote Sensing in Food Production and Food Security.
dc.identifier.citation
Kouadio, L., Newlands, N. K., Davidson, A., Zhang, Y., & Chipanshi, A. (2014). Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale. Remote Sensing, 6(10), 10193-10214. https://doi.org/10.3390/rs61010193
dc.identifier.doi
https://doi.org/10.3390/rs61010193
dc.identifier.issn
2072-4292
dc.identifier.uri
https://open-science.canada.ca/handle/123456789/3083
dc.language.iso
en
dc.publisher
MDPI
dc.rights - en
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights - fr
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights.openaccesslevel - en
Gold
dc.rights.openaccesslevel - fr
Or
dc.rights.uri - en
https://creativecommons.org/licenses/by/4.0/
dc.rights.uri - fr
https://creativecommons.org/licenses/by/4.0/deed.fr
dc.subject - en
Agriculture
Science and technology
dc.subject - fr
Agriculture
Sciences et technologie
dc.subject.en - en
Agriculture
Science and technology
dc.subject.fr - fr
Agriculture
Sciences et technologie
dc.title - en
Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale
dc.type - en
Article
dc.type - fr
Article
local.article.journalissue
10
local.article.journaltitle
Remote Sensing
local.article.journalvolume
6
local.pagination
10193-10214
local.peerreview - en
Yes
local.peerreview - fr
Oui
local.requestdoi
No
Download(s)

Original bundle

Now showing 1 - 1 of 1

Thumbnail image

Name: AssessingThePerformanceOfMODISNDVIAndEVIForSeasonalCropYieldForecastingAtTheEcodistrictScale_2014.pdf

Size: 8.58 MB

Format: PDF

Download file

Page details

Date modified: