Derivation of Biomonitoring Equivalents for aluminium for the interpretation of population-level biomonitoring data

Thumbnail image

Download files

DOI

https://doi.org/10.1016/j.yrtph.2021.104913

Language of the publication
English
Date
2021-02-27
Type
Article
Author(s)
  • Poddalgoda, Devika
  • Hays, Sean M.
  • Kirman, Chris
  • Chander, Natasha
  • Nong, Andy
Publisher
Elsevier

Abstract

Aluminium is widely used in many consumer products, however the primary source of aluminium exposure to the Canadian general population is through food. Aluminium can cause neurotoxicity and reproductive toxicity at elevated exposure levels. Health-based exposure guidance values have been established for oral exposure to aluminium, including a Minimal Risk Level (MRL) by the Agency for Toxic Substances and Disease Registry (ATSDR), a Provincial Tolerable Weekly Intake (PTWI) by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and a Tolerable Weekly Intake (TWI) by the European Food Safety Authority (EFSA). Aluminium concentration in blood and urine can be used as a tool for exposure characterization in a population. A pharmacokinetic (PK) model was developed based on human dosing data to derive blood Biomonitoring Equivalents (BEs), whereas a mass balance approach was used to derive urine BEs for the above guidance values. The BEs for blood for daily intake consistent with the MRL, PTWI and TWI were 18, 16 and 8 μg/L, respectively. BEs for urine for the same guidance values were 137, 123 and 57 μg/L, respectively. The derived BEs may be useful in interpreting population-level biomonitoring data in a health risk context and thereby screening and prioritizing substances for human health risk assessment and risk management.

Subject

  • Health,
  • Health and safety

Download(s)

URI

Collection(s)

Healthy environments, consumer safety and consumer products

Full item page

Full item page

Page details

Date modified: