Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax

Simple item page

Simple item page

Full item details

creativework.keywords - en
flax
genome-wide association study
genomic selection
prediction accuracy
polymorphism, single nucleotide
quantitative trait loci
quantitative trait nucleotides
creativework.keywords - fr
lin
étude d'association pangénomique
sélection génomique
précision de la prédiction
polymorphisme de nucléotide simple
loci quantitatifs (QTL)
traits quantitatifs nucléotides
dc.contributor.author
Lan, Samuel
Zheng, Chunfang
Hauck, Kyle
McCausland, Madison
Duguid, Scott D.
Booker, Helen M.
Cloutier, Sylvie
You, Frank M.
dc.date.accessioned
2023-04-18T12:25:56Z
dc.date.available
2023-04-18T12:25:56Z
dc.date.issued
2020-02-25
dc.description.abstract - en
Molecular markers are one of the major factors affecting genomic prediction accuracy and the cost of genomic selection (GS). Previous studies have indicated that the use of quantitative trait loci (QTL) as markers in GS significantly increases prediction accuracy compared with genome-wide random single nucleotide polymorphism (SNP) markers. To optimize the selection of QTL markers in GS, a set of 260 lines from bi-parental populations with 17,277 genome-wide SNPs were used to evaluate the prediction accuracy for seed yield (YLD), days to maturity (DTM), iodine value (IOD), protein (PRO), oil (OIL), linoleic acid (LIO), and linolenic acid (LIN) contents. These seven traits were phenotyped over four years at two locations. Identification of quantitative trait nucleotides (QTNs) for the seven traits was performed using three types of statistical models for genome-wide association study: two SNP-based single-locus (SS), seven SNP-based multi-locus (SM), and one haplotype-block-based multi-locus (BM) models. The identified QTNs were then grouped into QTL based on haplotype blocks. For all seven traits, 133, 355, and 1208 unique QTL were identified by SS, SM, and BM, respectively. A total of 1420 unique QTL were obtained by SS+SM+BM, ranging from 254 (OIL, LIO) to 361 (YLD) for individual traits, whereas a total of 427 unique QTL were achieved by SS+SM, ranging from 56 (YLD) to 128 (LIO). SS models alone did not identify sufficient QTL for GS. The highest prediction accuracies were obtained using single-trait QTL identified by SS+SM+BM for OIL (0.929 ± 0.016), PRO (0.893 ± 0.023), YLD (0.892 ± 0.030), and DTM (0.730 ± 0.062), and by SS+SM for LIN (0.837 ± 0.053), LIO (0.835 ± 0.049), and IOD (0.835 ± 0.041). In terms of the number of QTL markers and prediction accuracy, SS+SM outperformed other models or combinations thereof. The use of all SNPs or QTL of all seven traits significantly reduced the prediction accuracy of traits. The results further validated that QTL outperformed high-density genome-wide random markers, and demonstrated that the combined use of single and multi-locus models can effectively identify a comprehensive set of QTL that improve prediction accuracy, but further studies on detection and removal of redundant or false-positive QTL to maximize prediction accuracy and minimize the number of QTL markers in GS are warranted.
dc.description.plainlanguage - en
Genomic selection is a key step in plant breeding and crop improvement. It predicts the ability of achieving the desired traits in agriculture by using molecular markers spanning all chromosomes. Quantitative trait loci (QTL) are important molecular markers that increase the prediction accuracy, saving time and money. Using three different statistical models, we identified three potential QTL sets for seven traits in flax. This study evaluated the performances of different combinations of QTL sets in predicting the trait, and found that predictions based on a combination of the QTL detected by two of the statistical models for single traits were most accurate. The addition of extra markers, such as genome-wide SNP or QTL for other traits, reduced the prediction accuracy of traits. In order to maximize prediction accuracy and minimize the number of QTL markers, further studies on detection and removal of redundant or false positive QTL in genomic selection are required.
dc.description.plainlanguage - fr
La sélection génomique est une étape clé de l’amélioration des plantes et des plantes cultivées. Elle permet de prédire la capacité d’obtenir les caractères souhaités en agriculture à l’aide de marqueurs moléculaires couvrant l’ensemble des chromosomes. Les locus de caractères quantitatifs (QTL) sont d’importants marqueurs moléculaires qui augmentent l’exactitude des prédictions, ce qui permet d’économiser du temps et de l’argent. À l’aide de trois modèles statistiques différents, nous avons identifié trois ensembles de QTL potentiels pour sept caractères chez le lin. Dans le cadre de cette étude, nous avons évalué la performance de différentes associations d’ensembles de QTL pour prédire les caractères et nous avons constaté que les prédictions étaient le plus exactes lorsqu’elles étaient fondées sur une combinaison des QTL détectés par deux modèles statistiques pour des caractères individuels. L’ajout de marqueurs supplémentaires, comme des SNP pangénomiques ou des QTL associés à d’autres caractères, a réduit l’exactitude de prédiction des caractères. Afin de maximiser l’exactitude des prédictions et de réduire au minimum le nombre de marqueurs QTL, il faudra mener d’autres études sur la détection et l’élimination des QTL redondants ou faussement positifs dans la sélection génomique.
dc.identifier.citation
Lan, S., Zheng, C., Hauck, K., McCausland, M., Duguid, S. D., Booker, H. M., Cloutier, S., & You, F. M. (2020). Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/ijms21051577
dc.identifier.doi
https://doi.org/10.3390/ijms21051577
dc.identifier.issn
1422-0067
dc.identifier.uri
https://open-science.canada.ca/handle/123456789/208
dc.language.iso
en
dc.publisher
MDPI
dc.rights.openaccesslevel - en
Gold
dc.rights.openaccesslevel - fr
Or
dc.subject - en
Agriculture
dc.subject - fr
Agriculture
dc.subject.en - en
Agriculture
dc.subject.fr - fr
Agriculture
dc.title - en
Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax
dc.title.fosrctranslation - fr
Genomic prediction accuracy of seven breeding selection traits improved by QTL identification in flax
dc.type - en
Article
dc.type - fr
Article
local.article.journalissue
5
local.article.journaltitle
International Journal of Molecular Sciences
local.article.journalvolume
21
local.peerreview - en
Yes
local.peerreview - fr
Oui
Download(s)

Original bundle

Now showing 1 - 1 of 1

Thumbnail image

Name: GenomicPredictionAccuracyOfSevenBreedingSelectionTraitsImprovedByQTLIndentificationInFlax_2020.pdf

Size: 3.91 MB

Format: PDF

Download file

Page details

Date modified: