Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.)

Thumbnail image

Download files

DOI

https://doi.org/10.1186/s12870-014-0340-1

Language of the publication
English
Date
2014-11-29
Type
Article
Author(s)
  • Cabral, Adrian L.
  • Jordan, Mark C.
  • McCartney, Curt A.
  • You, Frank M.
  • Humphreys, D. Gavin
  • MacLachlan, Ron
  • Pozniak, Curtis J.
Publisher
BioMed Central Ltd.

Abstract

Background Pre-harvest sprouting (PHS) of wheat grain leads to a reduction in grain yield and quality. The availability of markers for marker-assisted selection (MAS) of PHS resistance will serve to enhance breeding selection and advancement of lines for cultivar development. The aim of this study was to identify candidate regions and develop molecular markers for PHS resistance in wheat. This was achieved via high density mapping of single nucleotide polymorphism (SNP) markers from an Illumina 90 K Infinium Custom Beadchip in a doubled haploid (DH) population derived from a RL4452/‘AC Domain’ cross and subsequent detection of quantitative trait loci (QTL) for PHS related traits (falling number [FN], germination index [GI] and sprouting index [SI]). SNP marker sequences flanking QTL were used to locate colinear regions in Brachypodium and rice, and identify genic markers associated with PHS resistance that can be utilized for MAS in wheat. Results A linkage map spanning 2569.4 cM was constructed with a total of 12,201 SNP, simple sequence repeat (SSR), diversity arrays technology (DArT) and expressed sequence tag (EST) markers. QTL analyses using Multiple Interval Mapping (MIM) identified four QTL for PHS resistance traits on chromosomes 3B, 4A, 7B and 7D. Sequences of SNPs flanking these QTL were subject to a BLASTN search on the International Wheat Genome Sequencing Consortium (IWGSC) database (http://wheat-urgi.versailles.inra.fr/Seq-Repository). Best survey sequence hits were subject to a BLASTN search on Gramene (www.gramene.org) against both Brachypodium and rice databases, and candidate genes and regions for PHS resistance were identified. A total of 18 SNP flanking sequences on chromosomes 3B, 4A, 7B and 7D were converted to KASP markers and validated with matching genotype calls of Infinium SNP data. Conclusions Our study identified candidate genes involved in abscissic acid (ABA) and gibberellin (GA) metabolism, and flowering time in four genomic regions of Brachypodium and rice respectively, in addition to 18 KASP markers for PHS resistance in wheat. These markers can be deployed in future genetic studies of PHS resistance and might also be useful in the evaluation of PHS in germplasm and breeding material.

Subject

  • Agriculture

Rights

Peer review

Yes

Open access level

Gold

Identifiers

ISSN
1471-2229

Article

Journal title
BMC Plant Biology
Journal volume
14
Journal issue
1
Article number
340
Accepted date
2014-11-18
Submitted date
2014-07-17

Citation(s)

Cabral, A. L., Jordan, M. C., McCartney, C. A., You, F. M., Humphreys, D. G., MacLachlan, R., & Pozniak, C. J. (2014). Identification of candidate genes, regions and markers for pre-harvest sprouting resistance in wheat (Triticum aestivum L.). BMC Plant Biology, 14(1). https://doi.org/10.1186/s12870-014-0340-1

Download(s)

URI

Collection(s)

Biology

Full item page

Full item page

Page details

Date modified: