Quantifying hail damage in crops using Sentinel-2 imagery

Simple item page

Simple item page

Full item details

creativework.keywords - en
Crops--Effect of hail on
Agriculture--Remote sensing
Sentinel-2 (Artificial satellite)
Time-series analysis
creativework.keywords - fr
Cultures--Effets de la grêle sur
Agriculture--Télédétection
Sentinel-2 (Satellites artificiels)
Série chronologique
dc.contributor.author
Ha, Thuan
Shen, Yanben
Duddu, Hema
Johnson, Eric
Shirtliffe, Steven J.
dc.date.accepted
2022-02-15
dc.date.accessioned
2025-01-24T14:25:38Z
dc.date.available
2025-01-24T14:25:38Z
dc.date.issued
2022-02-16
dc.date.submitted
2022-01-19
dc.description.abstract - en
Hailstorms are a frequent natural weather disaster in the Canadian Prairies that can cause catastrophic damage to field crops. Assessment of damage for insurance claims requires insurance inspectors to visit individual fields and estimate damage on individual plants. This study computes temporal profiles and estimates the severity of hail damage to crops in 54 fields through the temporal analysis of vegetation indices calculated from Sentinel-2 images. The damage estimation accuracy of eight vegetative indices in different temporal analyses of delta index (pre-and post-hail differences) or area under curve (AUC) index (time profiles of index affected by hail) was compared. Hail damage was accurately quantified by using the AUC of 32 days of Normalized Difference Vegetation Indices (NDVI), Normalized Difference Water Index (NDWI), and Plant Senescence Radiation Index (PSRI). These metrics were well correlated with ground estimates of hail damage in canola (r = −0.90, RMSE = 8.24), wheat (r = −0.86, RMSE = 12.27), and lentil (r = 0.80, RMSE = 17.41). Thus, the time-series changes in vegetation indices had a good correlation with ground estimates of hail damage which may allow for more accurate assessment of the extent and severity of hail damage to crop land.
dc.identifier.citation
Ha, T., Shen, Y., Duddu, H., Johnson, E., & Shirtliffe, S. J. (2022). Quantifying hail damage in crops using Sentinel-2 imagery. Remote Sensing, 14(4), Article 951. https://doi.org/10.3390/rs14040951
dc.identifier.doi
https://doi.org/10.3390/rs14040951
dc.identifier.issn
2072-4292
dc.identifier.uri
https://open-science.canada.ca/handle/123456789/3343
dc.language.iso
en
dc.publisher - en
MDPI
dc.rights - en
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights - fr
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights.uri - en
https://creativecommons.org/licenses/by/4.0/
dc.rights.uri - fr
https://creativecommons.org/licenses/by/4.0/deed.fr
dc.subject - en
Crops
Remote sensing
Weather
dc.subject - fr
Cultures
Télédétection
Temps (Météorologie)
dc.subject.en - en
Crops
Remote sensing
Weather
dc.subject.fr - fr
Cultures
Télédétection
Temps (Météorologie)
dc.title - en
Quantifying hail damage in crops using Sentinel-2 imagery
dc.type - en
Article
dc.type - fr
Article
local.acceptedmanuscript.articlenum
951
local.article.journalissue
4
local.article.journaltitle - en
Remote Sensing
local.article.journalvolume
14
local.pagination
1-17
local.peerreview - en
Yes
local.peerreview - fr
Oui
local.requestdoi
No
Download(s)

Original bundle

Now showing 1 - 1 of 1

Thumbnail image

Name: QuantifyingHailDamageInCropsUsingSentinel2Imagery_2022.pdf

Size: 4.99 MB

Format: PDF

Download file

Page details

Date modified: