Land cover harmonization using Latent Dirichlet Allocation

Simple item page

Simple item page

Full item details

dc.contributor.author
Li, Zhan
White, Joanne C.
Wulder, Michael A.
Hermosilla, Txomin
Davidson, Andrew M.
Comber, Alexis J.
dc.date.accepted
2020-07-08
dc.date.accessioned
2025-01-17T22:32:53Z
dc.date.available
2025-01-17T22:32:53Z
dc.date.issued
2020-07-27
dc.date.submitted
2019-12-31
dc.description.abstract - en
Large-area land cover maps are produced to satisfy different information needs. Land cover maps having partial or complete spatial and/or temporal overlap, different legends, and varying accuracies for similar classes, are increasingly common. To address these concerns and combine two 30-m resolution land cover products, we implemented a harmonization procedure using a Latent Dirichlet Allocation (LDA) model. The LDA model used regionalized class co-occurrences from multiple maps to generate a harmonized class label for each pixel by statistically characterizing land attributes from the class co-occurrences. We evaluated multiple harmonization approaches: using the LDA model alone and in combination with more commonly used information sources for harmonization (i.e. error matrices and semantic affinity scores). The results were compared with the benchmark maps generated using simple legend crosswalks and showed that using LDA outputs with error matrices performed better and increased harmonized map overall accuracy by 6–19% for areas of disagreement between the source maps. Our results revealed the importance of error matrices to harmonization, since excluding error matrices reduced overall accuracy by 4–20%. The LDA-based harmonization approach demonstrated in this paper is quantitative, transparent, portable, and efficient at leveraging the strengths of multiple land cover maps over large areas.
dc.identifier.citation
Li, Z., White, J. C., Wulder, M. A., Hermosilla, T., Davidson, A. M., & Comber, A. J. (2020). Land cover harmonization using Latent Dirichlet Allocation. International Journal of Geographical Information Science, 35(2), 348–374. https://doi.org/10.1080/13658816.2020.1796131
dc.identifier.doi
https://doi.org/10.1080/13658816.2020.1796131
dc.identifier.issn
1362-3087
dc.identifier.uri
https://open-science.canada.ca/handle/123456789/3331
dc.language.iso
en
dc.publisher - en
Taylor and Francis Ltd.
dc.rights - en
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights - fr
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights.uri - en
https://creativecommons.org/licenses/by/4.0/
dc.rights.uri - fr
https://creativecommons.org/licenses/by/4.0/deed.fr
dc.subject - en
Agriculture
Forests
Land cover
dc.subject - fr
Agriculture
Forêt
Couverture du sol
dc.subject.en - en
Agriculture
Forests
Land cover
dc.subject.fr - fr
Agriculture
Forêt
Couverture du sol
dc.title - en
Land cover harmonization using Latent Dirichlet Allocation
dc.type - en
Article
dc.type - fr
Article
local.article.journalissue
2
local.article.journaltitle - en
International Journal of Geographical Information Science
local.article.journalvolume
35
local.pagination
348-374
local.peerreview - en
Yes
local.peerreview - fr
Oui
Download(s)

Original bundle

Now showing 1 - 1 of 1

Thumbnail image

Name: LandCoverHarmonizationUsingLatentDirichletAllocation_2020.pdf

Size: 16.66 MB

Format: PDF

Download file

Page details

Date modified: