Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions

Thumbnail image

Download files

DOI

https://doi.org/10.1093/aob/mct283

Language of the publication
English
Date
2013-12-08
Type
Article
Author(s)
  • Colton-Gagnon, Katia
  • Ali-Benali, Mohamed Ali
  • Mayer, Boris F.
  • Dionne, Rachel
  • Bertrand, Annick
  • Do Carmo, Sonia
  • Charron, Jean-Benoit
Publisher
Oxford University Press

Abstract

Background and Aims: Cold is a major constraint for cereal cultivation under temperate climates. Winter-hardy plants interpret seasonal changes and can acquire the ability to resist sub-zero temperatures. This cold acclimation process is associated with physiological, biochemical and molecular alterations in cereals. Brachypodium distachyon is considered a powerful model system to study the response of temperate cereals to adverse environmental conditions. To date, little is known about the cold acclimation and freezing tolerance capacities of Brachypodium. The main objective of this study was to evaluate the cold hardiness of seven diploid Brachypodium accessions. Methods: An integrated approach, involving monitoring of phenological indicators along with expression profiling of the major vernalization regulator VRN1 orthologue, was followed. In parallel, soluble sugars and proline contents were determined along with expression profiles of two COR genes in plants exposed to low temperatures. Finally, whole-plant freezing tests were performed to evaluate the freezing tolerance capacity of Brachypodium. Key Results: Cold treatment accelerated the transition from the vegetative to the reproductive phase in all diploid Brachypodium accessions tested. In addition, low temperature exposure triggered the gradual accumulation of BradiVRN1 transcripts in all accessions tested. These accessions exhibited a clear cold acclimation response by progressively accumulating proline, sugars and COR gene transcripts. However, whole-plant freezing tests revealed that these seven diploid accessions only have a limited capacity to develop freezing tolerance when compared with winter varieties of temperate cereals such as wheat and barley. Furthermore, little difference in terms of survival was observed among the accessions tested despite their previous classification as either spring or winter genotypes. Conclusions: This study is the first to characterize the freezing tolerance capacities of B. distachyon and provides strong evidence that some diploid accessions such as Bd21 have a facultative growth habit.

Description

Published online in 2013. Published in print in 2014.

Subject

  • Plants,
  • Air temperature

Keywords

  • Brachypodium,
  • Acclimatization (Plants),
  • Cold,
  • Diploidy,
  • Plants, Flowering of,
  • Fructans,
  • Plant genetic regulation,
  • Phenotype,
  • Leaves,
  • Plant proteins,
  • Proline

Rights

Pagination

681-693

Peer review

Yes

Identifiers

ISSN
0305-7364
1095-8290

Article

Journal title
Annals of Botany
Journal volume
113
Journal issue
4
Accepted date
2013-10-28
Submitted date
2013-08-29

Citation(s)

Colton-Gagnon, K., Ali-Benali, M. A., Mayer, B. F., Dionne, R., Bertrand, A., Do Carmo, S., & Charron, J.-B. (2014). Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions. Annals of Botany, 113(4), 681–693. https://doi.org/10.1093/aob/mct283

Download(s)

URI

Collection(s)

Plants and weeds

Full item page

Full item page

Page details

Date modified: