Estimating time-dependent vegetation biases in the SMAP soil moisture product

Thumbnail image
Download(s)
DOI

https://doi.org/10.5194/hess-22-4473-2018

Language of the publication
English
Date
2018-08-22
Type
Article
Author(s)
  • Zwieback, Simon
  • Colliander, Andreas
  • Cosh, Michael H.
  • Martínez-Fernández, José
  • McNairn, Heather
  • Starks, Patrick J.
  • Thibeault, Marc
  • Berg, Aaron
Publisher
Copernicus GmbH

Abstract

Remotely sensed soil moisture products are influenced by vegetation and how it is accounted for in the retrieval, which is a potential source of time-variable biases. To estimate such complex, time-variable error structures from noisy data, we introduce a Bayesian extension to triple collocation in which the systematic errors and noise terms are not constant but vary with explanatory variables. We apply the technique to the Soil Moisture Active Passive (SMAP) soil moisture product over croplands, hypothesizing that errors in the vegetation correction during the retrieval leave a characteristic fingerprint in the soil moisture time series. We find that time-variable offsets and sensitivities are commonly associated with an imperfect vegetation correction. Especially the changes in sensitivity can be large, with seasonal variations of up to 40 %. Variations of this size impede the seasonal comparison of soil moisture dynamics and the detection of extreme events. Also, estimates of vegetation–hydrology coupling can be distorted, as the SMAP soil moisture has larger R2 values with a biomass proxy than the in situ data, whereas noise alone would induce the opposite effect. This observation highlights that time-variable biases can easily give rise to distorted results and misleading interpretations. They should hence be accounted for in observational and modelling studies.

Subject

  • Soil,
  • Satellites

Keywords

  • Soil moisture--Measurement,
  • Artificial satellites in agriculture,
  • Soil moisture--Remote sensing

Rights

Pagination

4473-4489

Peer review

Yes

Open access level

Gold

Identifiers

ISSN
1607-7938
1812-2116

Article

Journal title
Hydrology and Earth System Sciences
Journal volume
22
Journal issue
8
Accepted date
2018-08-02
Submitted date
2018-01-14

Citation(s)

Zwieback, S., Colliander, A., Cosh, M. H., Martínez-Fernández, J., McNairn, H., Starks, P. J., Thibeault, M., & Berg, A. (2018). Estimating time-dependent vegetation biases in the SMAP soil moisture product. Hydrology and Earth System Sciences, 22(8), 4473–4489. https://doi.org/10.5194/hess-22-4473-2018

URI

Collection(s)

Soils

Full item page

Full item page

Page details

Date modified: