Estimating time-dependent vegetation biases in the SMAP soil moisture product

Simple item page

Simple item page

Full item details

creativework.keywords - en
Soil moisture--Measurement
Artificial satellites in agriculture
Soil moisture--Remote sensing
creativework.keywords - fr
Sols--Humidité--Mesure
Satellites artificiels en agriculture
Sols--Humidité--Télédétection
dc.contributor.author
Zwieback, Simon
Colliander, Andreas
Cosh, Michael H.
Martínez-Fernández, José
McNairn, Heather
Starks, Patrick J.
Thibeault, Marc
Berg, Aaron
dc.date.accepted
2018-08-02
dc.date.accessioned
2025-09-29T13:50:31Z
dc.date.available
2025-09-29T13:50:31Z
dc.date.issued
2018-08-22
dc.date.submitted
2018-01-14
dc.description.abstract - en
Remotely sensed soil moisture products are influenced by vegetation and how it is accounted for in the retrieval, which is a potential source of time-variable biases. To estimate such complex, time-variable error structures from noisy data, we introduce a Bayesian extension to triple collocation in which the systematic errors and noise terms are not constant but vary with explanatory variables. We apply the technique to the Soil Moisture Active Passive (SMAP) soil moisture product over croplands, hypothesizing that errors in the vegetation correction during the retrieval leave a characteristic fingerprint in the soil moisture time series. We find that time-variable offsets and sensitivities are commonly associated with an imperfect vegetation correction. Especially the changes in sensitivity can be large, with seasonal variations of up to 40 %. Variations of this size impede the seasonal comparison of soil moisture dynamics and the detection of extreme events. Also, estimates of vegetation–hydrology coupling can be distorted, as the SMAP soil moisture has larger R2 values with a biomass proxy than the in situ data, whereas noise alone would induce the opposite effect. This observation highlights that time-variable biases can easily give rise to distorted results and misleading interpretations. They should hence be accounted for in observational and modelling studies.
dc.identifier.citation
Zwieback, S., Colliander, A., Cosh, M. H., Martínez-Fernández, J., McNairn, H., Starks, P. J., Thibeault, M., & Berg, A. (2018). Estimating time-dependent vegetation biases in the SMAP soil moisture product. Hydrology and Earth System Sciences, 22(8), 4473–4489. https://doi.org/10.5194/hess-22-4473-2018
dc.identifier.doi
https://doi.org/10.5194/hess-22-4473-2018
dc.identifier.issn
1607-7938
1812-2116
dc.identifier.uri
https://open-science.canada.ca/handle/123456789/3898
dc.language.iso
en
dc.publisher - en
Copernicus GmbH
dc.publisher - fr
Copernicus GmbH
dc.rights - en
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights - fr
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.rights.openaccesslevel - en
Gold
dc.rights.openaccesslevel - fr
Or
dc.rights.uri - en
https://creativecommons.org/licenses/by/4.0/
dc.rights.uri - fr
https://creativecommons.org/licenses/by/4.0/deed.fr
dc.subject - en
Soil
Satellites
dc.subject - fr
Sol
Satellite
dc.subject.en - en
Soil
Satellites
dc.subject.fr - fr
Sol
Satellite
dc.title - en
Estimating time-dependent vegetation biases in the SMAP soil moisture product
dc.type - en
Article
dc.type - fr
Article
local.article.journalissue
8
local.article.journaltitle - en
Hydrology and Earth System Sciences
local.article.journalvolume
22
local.pagination
4473-4489
local.peerreview - en
Yes
local.peerreview - fr
Oui
local.requestdoi - en
No
local.requestdoi - fr
No
Download(s)

Original bundle

Now showing 1 - 1 of 1

Thumbnail image

Name: EstimateTimeDependantVegetationBiases_2018.pdf

Size: 10.15 MB

Format: PDF

Download file

Collection(s)

Page details

Date modified: