Atmospheric Chemistry of Gaseous Oxidized Mercury at a Coastal Site in Atlantic Canada
- DOI
- Language of the publication
- English
- Date
- 2020-03-01
- Type
- Article
- Author(s)
- Cheng, Irene
- Zhang, Leiming
- Mao, Huiting
- Ye, Zhuyun
- Keenan, Robert
- Publisher
- American Meteorological Society
Abstract
A chemistry box model containing a comprehensive suite of mercury (Hg) oxidation mechanisms involving O3, OH, H2O2, Br, BrO, NO2, HO2, and other oxidants was used to simulate the formation of gaseous oxidized mercury (GOM) and understand the chemical processes driving the observed trends in GOM at Kejimkujik, Nova Scotia, Canada. Simulations were conducted using chemical schemes with and without oxidation by O3 and OH. The major oxidants of Hg are O3 and OH (79%), H2O2 (10%), Br with second-stage HgBr oxidation by NO2 (7%), and BrO (3%) in simulations where all GEM oxidation reactions were considered simultaneously. In an alternative chemical scheme without gas-phase oxidation by O3 and OH, the dominant GOM species were HgBrNO2 (58%) and HgBrO (23.5%). Using this chemical scheme, the model reproduced the observed GOM at sub-ppqv Br2 mixing ratios. In the scheme with O3 and OH, the variability in GOM between seasons and between continental and marine air masses was mainly due to the variability in gaseous elemental Hg, O3, OH, and aerosol liquid water content (LWC). LWC governs the partitioning of GOM to the aerosol aqueous phase in the model. In the scheme without O3 and OH, the variability in GOM by season and airmass origin strongly depends on Br and BrO, suggesting that rigorous validation of modeled Br and BrO data are essential for improving the model predictions of GOM in coastal environments.
Description
Copyright [2020] American Meteorological Society (AMS). For permission to reuse any portion of this Work, please contact permissions@ametsoc.org. Any use of material in this Work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC § 108) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a website or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. All AMS journals and monograph publications are registered with the Copyright Clearance Center (https://www.copyright.com). Additional details are provided in the AMS Copyright Policy statement, available on the AMS website (https://www.ametsoc.org/PUBSCopyrightPolicy)
Subject
- Air,
- Nature and environment,
- Science and technology
Pagination
1137–1149
Peer review
Yes
Open access level
Green
Identifiers
- ISSN
-
0022-4928
- 1520-0469
Article
- Journal title
- Journal of the Atmospheric Sciences
- Journal volume
- 77
- Journal issue
- 3
- Accepted date
- 2020-01-08
- Submitted date
- 2019-05-06